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Abstract—Atmospheric radiative transfer models (RTMs) are
widely used in satellite data processing to correct for the scatter-
ing and absorption effects caused by aerosols and gas molecules
in the Earth’s atmosphere. As the complexity of RTMs grows
and the requirements for future Earth Observation missions
become more demanding, the conventional Look-Up Table (LUT)
interpolation approach faces important challenges. Emulators
have been suggested as an alternative to LUT interpolation, but
they are still too slow for operational satellite data processing.
Our research introduces a solution that harnesses the power
of multi-fidelity methods to improve the accuracy and runtime
of Gaussian Process (GP) emulators. We investigate the impact
of the number of fidelity layers, dimensionality reduction, and
training dataset size on the performance of multi-fidelity GP
emulators. We find that an optimal multi-fidelity emulator
can achieve relative errors in surface reflectance below 0.5%
and performs atmospheric correction of hyperspectral PRISMA
satellite data (one million pixels) in a few minutes. Additionally,
we provide a suite of functions and tools for automating the
creation and generation of atmospheric RTM emulators.

Index Terms—Atmospheric correction, emulation, Gaussian
processes, hyperspectral, muti-fidelity, radiative transfer models

I. INTRODUCTION

ATMOSPHERIC radiative transfer models (RTM) are
computer codes that simulate the interaction of elec-

tromagnetic radiation with Earth’s atmosphere, i.e., gas
molecules, aerosols, and clouds. These models describe the
absorption, scattering, and emission of radiation by atmo-
spheric constituents based on physical principles and given a
configuration of optical properties and geometric conditions.
Atmospheric RTMs are used in a variety of applications,
such as remote sensing of the atmosphere (e.g., SMART-
G [1]), numerical weather prediction (e.g., RTTOV [2]),
and atmospheric correction of satellite data (e.g., 6SV [3],
libRadtran [4], MODTRAN [5]). These models’ increasing
complexity and realism result in a computational burden that
limits their direct use in operational applications. Therefore,
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a possible solution is to interpolate look-up tables (LUT) of
pre-computed RTM simulations as it is commonly applied
in operational atmospheric correction of satellite data [6].
However, the gridded distribution of input variables increases
LUT size exponentially, implying an increasing time to gen-
erate it and stringent RAM requirements [7], [8]. This is
particularly challenging for hyperspectral satellite missions
such as CHIME [9], EMIT [10], EnMAP [11], FLEX [12],
PRISMA [13] and SBG [14]. With several hundred spectral
channels, the data volume of LUTs will increase by one or
two orders of magnitude with respect to current multispectral
missions [15], limiting the applicability of state-of-the-art
atmospheric correction algorithms [16].

Statistical regression models known as emulators, or sur-
rogate models, have been proposed as an alternative to LUT
interpolation [17], [18]. Emulation approximates the behaviour
of a deterministic model at a fraction of its runtime, reducing
the LUT size and interpolation errors [19]. In [20], we assessed
key configuration elements that affect the performance of
an emulator (training dataset size, dimensionality reduction,
regression model). However, their runtime is slow for opera-
tional satellite data processing, and the combination with LUT
interpolation is still needed to achieve the required perfor-
mances [21]. To further enhance the accuracy of model pre-
dictions whilst reducing runtime, multi-fidelity methods have
been developed [22]. These methods combine limited simu-
lations of an accurate but computationally expensive model
(high-fidelity) with a larger simulation dataset from a fast but
less accurate model (low-fidelity) [23]. By merging various
fidelities, multi-fidelity methods correct computationally cheap
models so that the outputs resemble those of more accurate
models. In the context of atmospheric RTMs, multi-fidelity
methods have been implemented in MODTRAN’s scaled-
DISORT method [24] and more recently in the Cluster Low
Streams Regression (CLSR) method [25]. These implemen-
tations rely on simplistic approximations or have limited ap-
plicability. The scaled-DISORT method scales MODTRAN’s
2-stream simulations using a scaling factor obtained from
DISORT simulations at fewer wavelengths and interpolates
linearly for all remaining wavelengths. Conversely, the CLSR
method is only applied on a small spectral range around
gaseous absorptions (e.g. O2-A band).

Considering the above limitations, our main objective is
to improve the runtime and accuracy of atmospheric RTM
emulators by using multi-fidelity techniques. Our study ex-
pands upon our previous work [20] by integrating multi-
fidelity techniques with well-established Gaussian Process
(GP) regression [26] and dimensionality reduction into a
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unified emulation framework. In particular, we explore various
configurations of multi-fidelity emulators in the context of
atmospheric correction for operational satellite data processing
chains. The implemented approach is generic and valid for
multiple RTM and covers the full spectral range (400-2500
nm). Moreover, we provide the scientific community with a
practical and automated workflow and tools for generating
atmospheric RTM training datasets and developing emulators
applicable to real-world applications.

II. GAUSSIAN PROCESSES EMULATION

Based on our previous results [20], GP regression has been
selected in this work. In practice, an emulator uses a training
dataset of precomputed model simulations to infer the output
values of a deterministic model for an ensemble of unseen
input conditions. The following paragraphs give a description
of the implemented approach for multi-fidelity emulation.

A. Gaussian Processes for regression

A GP for regression is a Bayesian non-parametric method
for non-linear regression [27]–[31]. Let us consider a training
dataset {xi, yi}ni=1 with inputs xi = [xi1, . . . , xid]

> ∈ Rd
(e.g., atmospheric and geometric conditions), and their cor-
responding scalar outputs yi ∈ R (e.g., the transmittance
at a given wavelength). We define the d × n matrix X =
[x1, . . . ,xn] and the n × 1 vector y = [y1, . . . , yn]

>. The
observation model is defined as yi = g(xi) + εi, where
g(x) : Rd → R is the unknown underlying function that
we want to approximate (i.e., an atmospheric RTM). The
parameter εi is an additive Gaussian noise with zero mean
and variance σ2, i.e., εi ∼ N (ε|0, σ2). The model g(x) can
also be expressed as g(x) = h(x)>β + f(x). Here, h(x) =
[h1(x), . . . , hp(x)]

> : Rd → Rp is a parametric model formed
by p basis functions hj(x) and β = [β1, . . . , βp]

> their
corresponding scalar coefficients βj [30]. The function f(x) is
a non-parametric Gaussian process model with zero mean and
a covariance determined by a kernel function, k(x,x∗). This
kernel function models the similarity between input samples
calculating the linear dot product in a higher dimensional
feature space. Commonly used kernel functions are radial basis
functions such as the Gaussian kernel Eq. (1):

k(x,x∗) = θ2f exp

(
− (x− x∗)>(x− x∗)

2θ2l

)
, (1)

where θf and θl are hyper-parameters that must be tuned. An
extension of the Gaussian kernel is obtained by the so-called
automatic relevance determination (ARD) [32] in Eq. (2):

k(x,x∗) = θ2f exp

(
−

d∑
i=1

(xi − x∗i )2

2θ2l,i

)
(2)

with a scale-length parameter θl,i for each input dimension i.
Considering the Gaussian Process prior over f(x), it is pos-
sible to show that the posterior of g(x) given the data y,

i.e. p (g(x)|y), is a Gaussian distribution with mean ĝ(x) and
covariance σpost shown in the equations below:

ĝ(x) = h(x)>β + k(x)>α, (3)

σ2
post(x) = k(x,x)− k(x)>

(
K+ σ2In

)−1
k(x), (4)

where α =
(
K+ σ2IN

)−1
(y − Hβ). Here K =

[k(x1), . . . ,k(xn)] is the n × n kernel matrix where
k(x) = [k(x,x1), . . . , k(x,xn)]

> (n × 1 vector) and H =
[h(x1), . . . ,h(xn)]

> is a n× p matrix.
A GP model, GP(x|β,θ, σ), is defined by its hyperparameters
β, θ and σ, which can be estimated from the training dataset
by maximizing the marginal likelihood [30]. Once obtained
these hyperparameters, a prediction of yq at a new query point
xq is given by Eq. (3) where α is calculated from the training
dataset. In this work, we choose a constant basis function
h(x)=1 with p=1 (consequently β being a scalar) and the
ARD-Gaussian kernel in Eq. (2).

B. Emulation

Let us consider now the application of GP for the emulation
of multi-output model g(x) : Rd → Rb, which is used to
construct a training dataset {xi,g(xi)}ni=1, We define the b×n
matrix Y = [g(x1), . . . ,g(xn)] = [y1, . . . ,yb]

> of multi-
output data, with the n × 1 vector yi = [yi1, . . . , yin]

>. A
straightforward option for emulation would be to train an
individual GP model {ĝλ(x)}bλ=1 for each of the b outputs
so that ĝ(x) = [ĝ1(x), . . . , ĝb(x)]

>, where each ĝλ(x) is a
model described as in the previous section. Although con-
ceptually simple, this option is computationally inefficient
as it involves predicting individually hundreds or thousands
of spectral outputs calculated by an atmospheric RTM (i.e.,
b ≈ 103). The alternative method proposed in [18] exploits
the large correlations in spectroscopic data [33], combin-
ing dimensionality reduction with GP. In this method, an
individual GP is trained to predict each component of the
spectral data projected in a lower dimensional space. After
the prediction of each component, the inverse transformation
of the dimensionality reduction is then applied to reconstruct
the output spectra at the expense of some loss in accuracy.
This work uses principal component analysis (PCA) [34]
for dimensionality reduction. PCA has been widely used to
accurately reconstruct spectral atmospheric RTM data [35]–
[37]. It exploits the correlations in the b × n matrix Y to
project the original data into a space of orthogonal linearly
uncorrelated directions that maximize the variance of the
projections, i.e., Ŷ = UY. Here, Ŷ (same dimensions as
Y) and U (b × b matrix) are the eigenvectors of the output
covariance matrix, Cy = YY>. Since the eigenvector matrix
is orthogonal, the original spectral data is reconstructed by
the inverse transformation Y = U>Ŷ. The dimensionality
reduction by PCA is possible by selecting fewer components
nc � b from the eigenvectors matrix U, i.e., Ũ (nc×b matrix).
Typically, one takes the first nc <15 components with higher
variance to retain 99.99% of total variance [20]. Larger values
of nc only provide marginal improvements in accuracy while
slowing down an emulator. With the dimensionality reduction
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strategy, the process of training a GP emulator and using it
for prediction is summarized in pseudo-code 1 and 2.

Algorithm 1 GP emulator (training)
Input: Training dataset (X and Y)

Obtain PCA eigenvalues/vectors: Ŷ, U
Select the first nc components of Ŷ and U
for c=1 to nc do
σ2
c , βc, θc ← Train GPc model

end for
Output: GP models and PCA transformation: {GP}nc

c=1, U

Algorithm 2 GP emulator (prediction)
Input: Query point(s) (xq), {GP}nc

c=1 and U
for c=1 to nc do
ŷc,q = ĝc(xq) ← Run GPc model

end for
• Define the nc× 1 vector r̂q = [ŷ1,q, ..., ŷnc,q]

>.
• ỹq = Ũ>r̂q ← Invert PCA transformation

Output: ỹq = [ỹ1q, ..., ỹbq]
> ∈ Rb.

The training process is only carried out once, storing the
GP hyperparameters and PCA eigenvector matrix for later
use in the prediction. Notice also that, in the context of
atmospheric RTMs, we train an emulator for each of the
following six atmospheric transfer functions (spectral mag-
nitudes): path radiance (L0), at-surface direct/diffuse solar
irradiance (Edir/dif), spherical albedo (S), and direct/diffuse
target-to-sensor transmittance (Tdir/dif). With the notation in
the previous paragraphs, and using the direct transmittance as
an example, Y = [y1, . . . ,yb]

> ≡ [Tdir,1, . . . ,Tdir,b]
> is the

collection of training data for the direct transmittance.

C. Multi-fidelity emulation

Mathematically, a multi-fidelity model can be expressed
through the equation ĝt(x) = c·ĝt−1(x)+δt(x), where ĝt and
ĝt−1 are two subsequent fidelity layers of the model executed
at the input conditions in x, c is a scaling factor of the lower
fidelity later, and δt(x) ∈ Rb models the bias between two
fidelities. The emulator method proposed in [21] builds up on
this idea, setting c=1 and using 6SV as the lowest fidelity
model, g0(x), with a neural network trained to model the
difference δ1(x) between 6SV and MODTRAN (high-fidelity)
simulations, as shown below. This work extends this approach
sequentially by adding higher fidelities layers.

For the lowest fidelity, ĝ0(x), we fit a 2nd order poly-
nomial for the d-dimensional points in X = [x1, . . . ,xn],
and yλ = [yλ1, . . . , yλn]

> i.e., a surface fitting for each
wavelength λ=1 to b. The polynomial model is not only
fast predicting new outputs but also representative of the
main trends that describe the dependencies between input and
output spectral data of atmospheric RTMs (mainly exponential,
cosine, and power functions). For the first higher fidelity layer,
we evaluate the polynomial on the training dataset to get
ĝ0(xi) (i = 1 to n) and calculate the difference between
the training data and the predictions by the lowest fidelity

model, i.e., δ1(xi) = g(xi) − ĝ0(xi) (i = 1 to n). We then
construct a new training dataset {xi, δ1(xi)}ni=1 to train a GP
emulator δ̂1(x) to approximate δ1(x). Accordingly, the first
higher fidelity layer is ĝ1(x) = ĝ0(x)+ δ̂1(x). This process is
repeated for a user-defined number of layers nl. For example,
for the second layer, we apply a GP emulator of the previous
layer to construct a new training dataset {xi, δ2(xi)}ni=1,
where δ2(xi) = g(xi) − ĝ1(xi). This new dataset is then
used to train another GP emulator δ̂2(x) to approximate δ2(x).
The prediction for a 2-layers multi-fidelity emulator would be
ĝ2(x) = ĝ1(x)+ δ̂2(x) = ĝ0(x)+ δ̂1(x)+ δ̂2(x). The multi-
fidelity process is summarized in the following pseudo-code:

Algorithm 3 Multi-fidelity GP emulator (training)
Input: Training dataset (X and Y)

Fit 2nd degree polynomials for the data {xi,g(xi)}ni=1:
ĝ0(x)
for t=1 to nl do
• {ĝt−1(xi)}ni=1 ← Run t − 1 fidelity layer on training
data
• Calculate δt(xi) = g(xi)− ĝt−1(xi) for i = 1 to n
• δ̂t(x) ← Train emulator considering the pairs input-
outputs {xi, δt(xi)}ni=1

• Set ĝt(x) = ĝt−1(x) + δ̂t(x)
end for

Output: Emulators and polynomial fitting: {δ̂t(x)}nl
t=1, ĝ0(x)

III. MATERIALS AND METHODS

A. Simulated dataset and tools

To train the GP models in an emulator, the training dataset
should cover the d-dimensional input space so that the en-
semble of simulations is representative of the underlying cor-
relations between the RTM inputs and outputs. Following up
with our previous work [20], we applied the Latin Hypercube
Sampling (LHS) [38] to cover the full variability of the input
parameter space with the minimum and maximum boundaries
given in Table I. These input variables are typically used in
atmospheric correction as they are the main contributors to the
scattering and absorption of electromagnetic radiation in the
optical spectral range [39]. Without loss of generality, we used
MODTRAN6 as the underlying RTM in our emulator training
datasets. We configured the RTM simulations in the 400-2500
nm spectral range with a sampling of 5 cm−1 (i.e., 0.08 nm
to 3 nm), resulting in nearly 4200 wavelengths.

As for the training dataset size, we built three datasets with
100, 500, and 1000 samples using LHS to study the effect
of dataset size on accuracy. These sizes were suggested in
earlier studies to have a balance between the runtime and
accuracy [20], [40], [41]. For GP emulators, larger datasets
only provide a residual gain in accuracy at the expense of
increasing the runtime proportionally and potentially causing
problems during the training phase due to RAM limitations.
To compare the performance of all emulators, we simulated
a reference dataset of m=10000 samples generated with LHS
distribution and the same input variables and ranges as in Table

http://modtran.spectral.com/
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TABLE I
RANGE OF RTM INPUT VARIABLES. VIEWING ZENITH IS SET TO 0◦ .

Input variables Units Min. Max.
O3 column concentration (O3) [amt-cm] 0.25 0.45
Columnar Water Vapour (CWV) [g·cm−2] 0.2 4
Aerosol Optical Thickness (AOT) unit-less 0.04 0.6
Asymmetry parameter (g) unit-less 0.5 85
Ångström exponent (α) unit-less 0.1 2
Single Scattering Albedo (SSA) unit-less 0.8 1
Surface elevation (h) [km] 0 3
Solar Zenith Angle (SZA) [deg] 0 70
Relative Azimuth Angle (RAA) [deg] 0 180

I. All the datasets used for analysis in this work are accessible
from https://doi.org/10.5281/zenodo.7826005.

The generation of training and reference datasets was car-
ried out with the Atmospheric Look-up table Generator (ALG)
toolbox [42]. ALG is a software tool that generates datasets
of atmospheric transfer functions from a collection of atmo-
spheric RTMs. ALG v3.2 includes all the algorithms described
in Section II to automate emulator configuration, training, and
validation. Each GP model within an emulator was trained
using Matlab’s fitrgp function [26], and the resulting
hyperparameters (σ2, β and θ) were stored within ALG’s
emulator object. The ALG tool is freely downloadable at
www.artmotoolbox.com. The emulator function is accessible
from https://github.com/jorviser/AlgEmulator for standalone
use.

The processing time to simulate 1000 samples took 3 hours
on a personal computer with the following characteristics:
Windows 10 64-bit OS, i7-4710 CPU 2.50 GHz, 16 GB RAM,
and using nine parallel executions out of 12 CPUs. The same
computer was used for the application scenario described in
Section V.

B. Assessment methodology

The simulated atmospheric transfer functions in the ref-
erence dataset were combined with a vegetation Lambertian
surface reflectance, ρ, based on Eq. (5) resulting in m TOA
radiance spectra, {L}mi=1:

Li = L0,i +
(Edir,iµil,i +Edif,i)(Tdir,i +Tdif,i)ρ

π(1− Siρ)
, (5)

where µil,i is the cosine of the solar zenith angle (SZA).
The sub-index i identifies the ith sample of the reference
dataset with its input conditions xi and spectral outputs,
e.g. Tdir,i ≡ Tdir(xi). Each trained emulator was used to
predict the atmospheric transfer functions at the m input
conditions of the reference dataset, which were used to derive
the surface reflectance by inversion of (5). This produced
a dataset of m inverted surface reflectance spectra {ρ̂}mi=1

for which we calculated the relative difference against the
reference surface reflectance spectrum ρ at every wavelength,
i.e., εi = (ρ̂i−ρi)/ρi with i=1 to m. We then calculated the
mean relative error (MRE) over the entire reference dataset,
i.e., MRE = 1

m

∑m
i=1 εi to compare all emulators graphically.

We also calculated the spectrally-averaged MRE (MREλ),
excluding wavelengths in the deep H2O absorption (1325-
1500 nm and 1750-1950 nm), as well as we kept track of the
relative error histogram at every wavelength and the emulator
execution time of the m samples for further analysis.

We first assessed the multi-fidelity emulation accuracy as a
function of the number of layers (nl=0 to 5) and PCA com-
ponents (nc=3 to 15). In this first assessment, the emulators
were trained with a dataset of 500 samples as a compromise
between accuracy and computation time. The spectral MRE
is plotted for all emulators with varying values of nc and nl.
The MREλ and execution time as a function of the number
of PCA components and multi-fidelity layers are presented
as a 2D image to compare all multi-fidelity emulators. Their
product is shown in a bar chart to identify the best-balanced
multi-fidelity emulator.

Second, we investigated the role of the training dataset size
in the accuracy of emulators by increasing the number of
training samples (n=100, 500, and 1000) to train multi-fidelity
emulators. Here, we fixed the number of PCA components to
nc=5 and varied the number of layers (nl=0 to 5). We plotted
the spectral MRE of all emulators with varying values of nl
with one figure for each training dataset size. The MREλ and
emulator execution time for each emulator is presented as a
bar chart as a function of the training dataset size. Based on
the previous analysis, we identified the best emulator in terms
of balance between accuracy and computation time, and we
plotted the histogram of spectral relative errors.

IV. RESULTS

Results are organized as follows. First, we present the
performance assessment results of various multi-fidelity em-
ulators, studying the impact of key configuration parameters
for predicting spectral atmospheric transfer functions. Then, as
proof-of-concept, we applied multi-fidelity emulators for the
atmospheric correction PRISMA hyperspectral satellite data.

A. Performance assessment

The performance of the multi-fidelity GP emulators is first
analyzed as a function of the number of PCA components (nc)
and multi-fidelity layers (nl) using a training database of 500
samples. Their accuracy is compared by plotting the spectral
mean relative errors (MRE) (Fig. 1), only showing three values
of nc (3, 7, and 15) to illustrate extreme and intermediate
configurations. Generally, all results show similar spectral
behavior of the relative errors due to several reasons. First, the
errors increase inside the deep H2O and O2 absorption bands
due to divisions by nearly zero during the inversion of surface
reflectance from Eq. (5). Second, the nature of the relative
error metric implies that wavelengths with lower reflectance
values (e.g., 400-690 nm and >1500 nm for vegetation) have
higher error values. Third, the error values increase towards
shorter wavelengths (<500 nm) where the aerosol scattering
is more relevant and thus where the emulators have to predict
the spectral outputs for a larger number of sensitive input
parameters [39]. The spectral error plots also show the effect
of a poor spectral reconstruction with a low number of PCA

https://doi.org/10.5281/zenodo.7826005
https://www.mathworks.com/help/stats/fitrgp.html
www.artmotoolbox.com
https://github.com/jorviser/AlgEmulator
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components (see higher errors in the O3 region at ∼550 nm
with 0 multi-fidelity layers). These results indicate that, in
agreement with the results presented in [20], an increasing
number of PCA components reduce the errors in the predicted
spectral data. This is particularly observed in the case of
the simple (i.e., no multi-fidelity, nl=0) GP emulator, where
the errors are reduced by a factor ∼5 when passing from
three PCA components to 15 components. The higher errors
associated with a low number of PCA components (nc=3) are
somewhat compensated by adding extra layers in the multi-
fidelity GP emulators (see top plot). This improvement seems
to reach a saturation limit after nl=3 layers. However, this
lower limit in the MRE values is achieved with fewer fidelity
layers when adding more PCA components. In the extreme
case of nc=15, an emulator of only one fidelity layer obtains
the lowest MRE values. This error is still lower than with a
simple GP emulator in the 400-1100 nm spectral range. It is
also observed that the addition of new fidelity layers reduces
the values of MRE differently depending on the spectral
range and the number of PCA components. For instance, with
nc=7, passing from nl=1 to nl=2 only reduces the MRE for
wavelengths above 1000 nm.

Fig. 2 shows the MREλ values for various combinations of
nc and nl, allowing us to have an overview of the accuracy
achieved by all emulators. We can observe how an increasing
number of PCA components and multi-fidelity layers reduce
prediction errors. However, adding extra layers in a multi-
fidelity emulator seems to reduce faster the MREλ values more
than adding additional PCA components. For example, we
note that an MREλ=0.9% is achieved with an emulator with
configuration nc=3 and nl=1 or with an emulator with nc=7
and nl=0. We also note that the lowest value of MREλ=0.4%
is achieved with three multi-fidelity layers regardless of the
number of PCA components. This error value can also be
achieved with as few as 5 PCA components and three layers
or 7 PCA components and two layers.

Similarly, Fig. 3 presents the runtime spent by all emulators
to predict the m=10000 points in the reference dataset. The
figure indicates that the runtime varies linearly as a function
of nc and nl. As expected, the fastest emulator is also the
simplest (nc=3 and nl=0) and calculates the prediction in 1.5 s.
On the contrary, the slowest emulator is also the most complex
(nc=15 and nl=5) with a runtime of 18 s. However, a balanced
emulator consisting of 5 PCA components and three multi-
fidelity layers has a runtime of 5 s and achieves the same
accuracy (MREλ=0.4%) as the most complex emulator.

Since the combination of the number of PCA components
and multi-fidelity layers can compensate one another and reach
similar accuracy and performance, we plot in Fig. 4 a bar
chart with the product of runtime and MREλ. Indeed, we seek
an emulator that obtains the lowest errors with a competitive
runtime. This figure shows that the most balanced emulators
are achieved with nl=1 multi-fidelity layers regardless of
the number of PCA components. Among them, the best
balanced emulator is achieved with 5 PCA components and
one multi-fidelity layer, which results in an MREλ=0.54% and
a prediction time of 1.86 s. To achieve the same accuracy-
time performance as the fastest emulator (nc=3 and nl=0), an
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Fig. 1. Spectral MRE (in %) for the multi-fidelity emulators (from 0 to 5
layers) as a function of the number of PCA components: nc=3 (top), nc=7
(middle) and nc=15 (bottom). Training dataset size: n=500.
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Fig. 2. Average mean relative error (MREλ, in %) as a function of the number
of PCA components and multi-fidelity layers. Training dataset size: n=500.

emulator with nc=3 and nl=4 (or with nc=7 and nl=3) should
be considered. That is, the gain in accuracy (1.8% to 0.4%)
compensates for the increase in runtime (1.5 s to 6.3 s),

Based on these findings, we fixed the number of PCA
components to nc=5 and studied the impact of training dataset
size on accuracy and performance. Fig. 5 shows the spectral
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Fig. 3. Same as Fig. 2 but for prediction time (in s) for the m=10000 samples
in the reference dataset.
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Fig. 4. Product of MREλ and prediction time as a function of the number
of PCA components and multi-fidelity layers. Training dataset size: n=500.

MRE results for n=100 training samples (top), n=500 (mid-
dle), and n=1000 (bottom). We observe how the MRE values
are reduced in all emulator configurations when increasing
the size of the training dataset. However, this reduction is
driven by the number of fidelity layers. With n=100 training
samples, the simple GP emulator (i.e., nl=0) obtains the lowest
MRE compared to any multi-fidelity emulator. The increase of
the training dataset size to n=500 reduces the MRE results
of this simple emulator by nearly a factor of 10 in the
visible spectral range without major improvements at longer
wavelengths (>1500 nm). Further increase in the training
dataset size (n=1000) does not improve the emulator accuracy.
This situation is reversed with emulators of one or more layers
after 500 training samples. In these configurations, the MRE
values are lower than with nl=0 for all wavelengths. When
increasing n to 1000, no further improvements are observed
at wavelengths above 1500 nm in the case of nl=1. Yet, adding
extra layers allows the emulators to reduce error values further
by exploiting the data from larger datasets.

Regarding performance, the runtime for predicting 10000
samples is summarised in Tab. II. We observe that the emu-
lators with none or nl=1 multi-fidelity layers have the lowest
runtime (1.8 s). The runtime increases by a factor of 1.3-1.6
when passing from 100 to 500 training samples and an extra
factor ∼2 for 1000 samples. Third, adding extra layers in the
emulator increase the runtime linearly, as seen in Fig. 3.

From these results, we selected the best-balanced emulator
in terms of mean accuracy vs runtime (i.e., 5 PCA compo-
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Fig. 5. Spectral MRE (in %) for the multi-fidelity emulators (from 0 to 5
layers) as a function of the training dataset size: n=100 (top), n=500 (middle)
and n=1000 (bottom). The number of PCA components was nc=5.

TABLE II
RUNTIME (IN S) FOR THE PREDICTION OF m=10000 SAMPLES USING A
TRAINING DATASET OF n=100, 500, AND 1000 SAMPLES (ROWS) AND

VARIOUS MULTI-FIDELITY LAYERS (COLUMNS).

Layers (nl): 0 1 2 3 4 5
100 2.2 1.9 2.7 3.7 4.3 5.3
500 1.8 1.8 3.5 5.3 7.2 8.7

1000 3.7 4.1 6.4 9.3 13.5 17.6

nents, one layer, and 500 training samples), and analysed the
relative error histogram (see Fig. 6). The histogram shows
higher errors in the 400-500 nm spectral range due higher
impact of aerosol scattering and the low reflectance values of
the reference spectrum. After 600 nm, except for absorption
regions, the errors increase exponentially (linearly in log-scale)
for higher wavelengths. The highest relative error values (95%
percentile) are typically below 2% outside of deep absorption
regions and up to 7% in the O2-A and 4% in the H2O band
at ∼820 nm. On average, the errors are reduced to 0.2-0.7%
outside of absorption regions and down to 2% in the O2-A
absorption. For 10% of the reference conditions, the errors
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can be as low as ∼0.01%.
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Fig. 6. Relative error histogram (in %) (see colour bar) and mean error (black
dashed line) between reference and inverted surface reflectance with a multi-
fidelity emulator with n=500, nc=5 and nl=1.

V. APPLICATION EXAMPLE: ATMOSPHERIC CORRECTION

To test the utility of emulators in practical applications,
we applied the best emulators to the atmospheric correc-
tion of PRISMA Level-1 data (see Fig. 7). PRISMA is an
imaging spectrometer satellite mission implemented by the
Italian Space Agency (ASI). The instrument acquires the TOA
radiance in the 400-2500 nm spectral range with nearly 240
spectral bands of ∼10 nm resolution. The Level-1 product
has a size of 30×30 km2 with a spatial resolution of 30 m,
resulting in an image of 1000×1000 pixels. More details about
the PRISMA mission are available in ASI’s dedicated website.
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Fig. 7. Sample TOA radiance spectrum and quickview of PRISMA Level-1
product acquired over Gobabeb (Namibia) on the 05/10/2022 at 9:15.

The selected PRISMA product corresponds to the desert
of Gobabeb, in Namibia (23◦36′S; 15◦07′E), acquired on
05/10/2022 at 9:15 with a viewing zenith angle of 0.8◦,
SZA=28.5◦ and RAA=75◦. The area is characterized by a
smoothly varying topography (0.4-0.7 km) and a large spatially
homogeneous surface with small temporal and spatial variabil-
ity of bare soil reflectance. A RadCalNet station in Gobabeb is
widely used for radiometric calibration monitoring of satellite
instruments [43]. As for the atmospheric conditions, the ozone
(0.285 atm-cm) is obtained from CAMS re-analysis data
after spatial/temporal interpolation to PRISMA acquisition.
The per-pixel values of water vapor (0.7-1 g·cm−2), AOT
(0.1), and Angstrom exponent (1.9-2.2) are directly extracted
from PRISMA Level-2C (L2C) product. For the remaining
aerosol parameters (asymmetry factor and SSA), we assigned
the spectrally-averaged values from MACv2 climatology [44]
spatially and temporally interpolated at PRISMA observations,
i.e. g=0.61 and SSA= 0.91. The atmospheric correction was

performed by inverting the surface reflectance from (5). The
the best-balanced GP emulator was run to predict atmospheric
transfer functions at high spectral resolution using the input
geometric and atmospheric conditions at every pixel. These
spectra were then convolved by PRISMA’s spectral response
function, which was approximated with a Gaussian model.

The 106 image pixels were processed in less than 4 min
using batches of 100000 pixels to avoid RAM saturation. Fig.
8 shows the statistics of surface reflectance values from the
PRISMA L2C product (blue) and the inversion with the se-
lected multi-fidelity emulator (red). These surface reflectance
statistics are presented with the mean values (lines) and the
10th and 90th percentiles (shaded areas). The figure indicates
good agreement on the inverted reflectance with nearly over-
lapping means and percentile values. However, some discrep-
ancies are visible in the deep H2O bands (1410 nm and 1850
nm), where the PRISMA L2C reflectance product is strictly
zero, and in the spectral range above 2250 nm, where the
PRISMA L2C reflectance product is affected by a residual
H2O absorption.

Fig. 8. Average surface reflectance from PRISMA L2C product and inverted
from emulation (blue and red dashed lines respectively) and percentiles (Px)
10% and 90% (shaded areas). Overlapping areas are seen in purple colour.

VI. DISCUSSION

Operational atmospheric correction of satellite data relies on
computationally efficient yet accurate algorithms to approxi-
mate atmospheric RTM output spectral data. Emulators are
statistical regression methods used to approximate the relation
between input states and output spectral data of a deterministic
RTM. They offer an alternative, and quite an advantageous
approach, to traditional look-up table interpolation [19]. In
this study, we explored multi-fidelity methods to improve
the accuracy and performance of emulators. Multi-fidelity
essentially places a recursive set of emulators in which one
(higher fidelity) layer approximates the prediction residuals
by a previous (lower fidelity) layer. We proposed building
on GP models and studied the impact on the solution by
different configuration parameters: (1) the number of fidelity
layers, (2) the number of components after dimensionality
reduction, and (3) the training dataset size. In this study, we
first investigated the impact of dimensionality reduction and
multi-fidelity on the accuracy and runtime of a GP emulator.
We found that multi-fidelity compensates for residual errors

https://www.asi.it/en/earth-science/prisma/
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caused by dimensionality reduction and improves prediction
accuracy beyond what is achievable with a simple (i.e., without
multi-fidelity) GP emulator. The number of PCA components
and fidelities compensate for each other and achieve similar
accuracies with a minimum prediction error of MREλ=0.4%.
This lower error bound is achieved after a maximum of
three fidelity layers, independently of the number of PCA
components, and as little as one fidelity layer when having
a sufficiently large number of PCA components (nc ≥11).
The addition of extra fidelity layers does not improve the
accuracy. Indeed, for every extra layer, the gain in accuracy
is lower since the residuals to be predicted contain less signal
characteristics and are harder to predict. The gain in accuracy
by a multi-fidelity emulator is more pronounced at shorter
wavelengths (<1100 nm) due to the richer gaseous absorption
features and higher sensitivity to aerosol parameters. For
generic applications, we identified the best-balanced emulator
consisting of one layer and five PCA components, achieving
an MREλ=0.56% and runtime of 1.86 s for predicting 10000
new samples. Note that an emulator with zero layers has the
same number of GP models as with one layer since the lowest
fidelity layer is a regression by polynomial surface fitting. We
note that, depending on the application, the emulator can be
optimized to achieve the required accuracy at the expense of
runtime.

Second, we explored the impact of training dataset size on
emulator accuracy. Our prior research [20] showed that GP
emulator models reach accuracy limits with training datasets
of 500-1000 samples since adding new samples does not
provide additional statistical information for predicting smooth
atmospheric transfer functions. However, incorporating the
multi-fidelity technique can overcome this limit and reduce
prediction errors by approximately 50% when doubling the
number of training samples. Multi-fidelity models leverage the
statistical information in new samples through the calculated
residuals between the previous-layer predictions and the train-
ing dataset. Nevertheless, doubling the training samples from
500 to 1000 doubles the runtime. Hence, finding an appropriate
training dataset size that satisfies both accuracy and computa-
tional requirements for operational use is necessary. We also
investigated the possibility of reducing the training dataset
size to improve the runtime without sacrificing accuracy.
However, using only 100 samples for training led to higher
prediction errors in the multi-fidelity emulator compared to
the simple GP emulator. This is because the multi-fidelity
emulator is constructed with multiple layers that refine the
initial prediction from a 2nd degree polynomial surface fitting
(lowest fidelity layer). To fit this polynomial regressor, for
example, for a hyper-surface in d=9 dimensions, at least
n=1+d+d(d+1)/2=55 training samples are needed. With this
minimum size, the fitted surface will pass precisely through
the training points, resulting in prediction residuals of zero
by definition. Consequently, the GP emulator on the first (and
subsequent) layers will always predict values equal to zero
for all query points. Thus, the accuracy of a multi-fidelity
emulator trained with this minimum set of training samples
will be limited by the accuracy of the polynomial interpolation.
This indicates that a minimum training dataset of 100 to 500

samples is needed to train an accurate multi-fidelity emulator.
Regarding the sampling of input variables in the training
dataset, we adopted the LHS method due to its simplicity
and accuracy [39]. However, active learning methods rooted
in the Bayesian optimization framework can enhance the
performance and accuracy of a multi-fidelity emulator [45].
Active learning identifies regions in the input variable space
where the residual errors between fidelities are higher and
generate an optimal set of training samples to reduce both
the prediction error and the runtime.

Another potential improvement of the proposed multi-
fidelity emulation method is regarding the regressor in the
lowest fidelity layer. In this work, we used a polynomial
surface fitting due to its speed and simplicity. Yet, alternative
options based on atmospheric RTMs have been proposed in
similar studies [21], [25]. While these alternative options use
a physically-based model for the lowest fidelity layer that
contributes to the explainability of the emulator, they are
computationally less efficient and require more complex im-
plementation. Semi-empirical atmospheric RTMs (e.g., [46])
could be a suitable option for physics-aware emulation with
less complex implementation and a fast runtime.

We finally applied the multi-fidelity emulation technique to
invert the surface reflectance from PRISMA L1 data, achieving
less than 4 minutes of runtime for processing 1 million pixels.
In the context of operational satellite data processing, the
runtime is still slow to generate atmospherically corrected
products within near-real-time mission requirements (e.g., [9]).
Indeed, the maximum half-orbit length of an imaging data
take over land (15000 km) implies that a speed-up factor of
∼20 is still needed. Profiling the code identified bottlenecks
in inverse PCA (50 s), kernel matrix calculation (45 s), and
polynomial interpolation (30 s). The inverse PCA is applied
for each batch of 10000 query points to recover the six
atmospheric transfer functions (each with 4200 wavelengths).
This results in large matrix multiplication, suggesting that its
implementation in GPUs could significantly improve runtime.
The kernel matrix calculation of n×10000 elements (n=500)
is repeated in a loop for each transfer function, nc=5 PCA
components, and nl=1 layer. Accordingly, the runtime of the
multi-fidelity emulator could also be reduced by optimizing
the number of PCA components on each atmospheric transfer
function. Furthermore, atmospheric correction in macro-pixels
(image areas with nearly constant atmospheric and geometric
conditions) could exponentially reduce the number of emulator
predictions and runtime. For example, a macro-pixel of 3×3
pixels would reduce the runtime to 25 s. Regarding surface
reflectance, the emulator processor generally agreed well with
the PRISMA L2C product [47]. This was expected since the
emulators used the same atmospheric RTM (MODTRAN) and
atmospheric conditions as the PRISMA L2 processor. How-
ever, there were minor differences below 2250 nm, possibly
due to differences in the aerosol modeling (optical properties
in the emulator, rural aerosol in PRISMA L2C) and the
digital elevation model. Above 2250 nm, a significant differ-
ence was observed, indicating an incorrect H2O absorption
correction in the PRISMA Level-2 processor. We note that
the PRISMA L2 processor might not have accurately re-
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trieved the atmospheric parameters in the L2C product. Indeed,
the CAMS re-analysis product (CWV=1 g·cm−2, AOT=0.22
and α=1.64) and RadCalNet station (CWV=1.1±0.2 g·cm−2,
AOT=0.248±0.002 and α=1.24±0.02) provide values that
disagree with the PRISMA L2C product. Despite this, using
the PRISMA L2C atmospheric products allowed a direct com-
parison between the L2C surface reflectance product and our
inversion based on emulation. Operationally, the proposed em-
ulator methodology faces similar challenges to the traditional
LUT interpolation approach in terms of requiring a training
dataset that adequately represents the physical processes and
natural variability encountered by satellite observations. The
presented emulation method provides significant advantages in
terms of uncertainty propagation in an atmospheric correction
algorithm. From Eq. (4), the mathematical framework of GP
regression enables the incorporation of uncertainties in the
input TOA radiance as well as uncertainties in the input
atmospheric and geometric parameters.

VII. CONCLUSIONS

In this study, we demonstrated the effectiveness of multi-
fidelity methods in improving the accuracy and performance
of atmospheric RTM emulators for satellite data atmospheric
correction. We examined several configuration parameters,
such as the number of fidelity layers, the dimensionality
reduction, and the training dataset size, and how they affect
the emulator’s accuracy and performance. Our results reveal
that multi-fidelity compensates for residual errors caused by
dimensionality reduction and significantly improves prediction
accuracy beyond what is achievable with a simple Gaussian
process (GP) emulation. This is particularly true for shorter
wavelengths, where multi-fidelity methods better reproduce
the richer gaseous absorption features and higher sensitivity to
aerosols. The study also showed that multi-fidelity emulators
can overcome the accuracy limit of a simple GP emulator
by enhancing the statistical information contained in larger
training datasets. This allows emulators to reduce prediction
errors by approximately 50% when doubling the number of
training samples but at expense of doubling the runtime. We
suggested an emulator consisting of one fidelity layer, five
PCA components, and 500 training samples, which achieves a
minimum prediction error of 0.56% and a runtime of 1.86
seconds for predicting 10000 new samples. This emulator
was successfully applied to invert the surface reflectance from
PRISMA L1 data, achieving less than 4 minutes of runtime
for processing 1 million pixels and a good alignment with
the PRISMA L2C product. These results show that multi-
fidelity methods improve the accuracy and runtime of GP
emulators and can be used in the atmospheric correction of
satellite instruments with competitive accuracy and compu-
tational efficiency. While we presented this methodology for
hyperspectral satellite data processing, it can also be applied
to multispectral instruments, where dimensionality reduction
is no longer required. Finally, we proposed several strategies
to further improve the accuracy and speed of atmospheric
RTM emulators. These strategies include the use of physics-
informed models, active learning techniques, and optimized

implementation of emulators within atmospheric correction
algorithms. We expect that implementing these strategies will
improve the accuracy and performance of atmospheric RTM
emulators, enabling their widespread use in operational satel-
lite data processing.
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